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The performance of conjugate gradient schemes for minimizing unconstrained
energy functionals in the context of condensed matter electronic structure density
functional calculations is studied. The unconstrained functionals allow a straight-
forward application of conjugate gradients by removing the explicit orthonormality
constraints on the quantum-mechanical wave functions. However, the removal of
the constraints can lead to slow convergence, in particular when preconditioning is
used. The convergence properties of two previously suggested energy functionals are
analyzed, and a new functional is proposed, which unifies some of the advantages of
the other functionals. A numerical example derived from a diamond crystal confirms
the analysis. © 1999 Academic Press

Key Wordselectronic structure; density functional theory; unconstrained; energy
functional; conjugate gradients; convergence.

1. INTRODUCTION

There is little need to motivate the interest of science in electronic structure calculat
The description of the chemical bond is probably the most celebrated success. Many
important properties of matter, such as, for example, the response to electric and ma
fields, are also determined by the electronic structure.

The behavior of non-relativistic electrons is described by the many-electroodhoper
equation, which is too numerically demanding to solve for most real materials, since
effort grows exponentially with the number of electrons. In density functional theory (DI
[1, 2], the task is reduced to dealing with an effective single-particle system with muchr
favorable scaling properties. The fundamental theorems of DFT are that (a) the grounc
energyE of a quantum-mechanical system is a functional ofdleetron number density
p(r) only, and (b) the true ground state density minimizes this functional [1]. Althou
in principle E is a functional ofp(r) only, in practice a “Kohn—Sham” expression [2
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is used for accuracy reasons, involving single-particle wave functignsi =1, ..., m.
Restricting the system to be a spin-compensated insulatoNyjttlectrons, then = Ng;/2
wave functiong|y)} correspond to orbitals occupied by electrons. With these definitior
at hand, Kohn—Sham theory reduces to the optimization problem

m

_ i _ i I
Eo—{rw{;E[{lw}]—{rmr}lZi:l(vfll 2V i) + Flp]. 1)

The electron number densipy(r) is a scalar function of the spatial positiomnd depends
on the wave functions as

p(r) =2 [(yilr) 2. 2
i=1

Notice that the wave functior{$y/)} are subject to orthonormality constraints:
(Wilyrj) = &ij. 3)

The functionalF[p] contains the ionic, exchange-correlation, and Hartree energy of tl
Kohn—Sham functional [2]. The exchange-correlation energy captures the complice
many-body effects, and while it is proven to exist [2], no simple and exact express
is known for it. In the local density approximation (LDA), this exchange-correlation ter
is approximated by a simple functional form, which depends on the local electron d
sity only. The recently developed generalized gradient approximations (GGA) [3] imprc
upon LDA by including the gradient of the electron charge density into the expression
the exchange-correlation term. The resulting computational procedure is not substant
different from LDA, but the results are generally more accurate.

These days, up to several hundred atoms can be treated within DFT/LDA [4]. Ma
algorithms have been proposed to solve the DFT/LDA equations (see, e.g., [5-9]), but
search for more efficient schemes is still an active field [10].

2. FORMALISM

From a computational point of view, the DFT/LDA electronic structure problem is simp
a minimization of a function (cf. Eq. (1)) in a large parameter space. This section introdu
the necessary notation and a model functional which will be analyzed subsequently.

For optimizing (1), it is useful to know the first derivative & with respect to the
parameters$y; ):

oE A
= 2H |y 4
Wil [¥i) (4)
H :—%v2+\7 (5)
~ 5. OF
V = /rd r—(Sp(r)|r)(r|. (6)

This derivativedoes nottake the orthonormality constraints (3) into account. Both the
Hamiltonian operatoH and the potential operat@rare in general Hermitian operators,
but for simplicity will be assumed real and symmetric here.
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The constraints can be treated by introducing a set of Lagrange multipliees 1, ..., m
(also known as Kohn—-Sham eigenvalues), such that (1) becomes a non-linear eigern
problem

(Hlpl —e)lyi) =0, i=1....m, 7)

where the operatoH [p] depends on the solutior{$y)} through (2), (5), and (6). The
standard procedure for many years has been to solve (7) with a fast, iterative eigens
then update andH [p] by forming » from them eigenvectors with the smallest eigenvalue
€, and solve again, until “self-consistency” is achieved. For a large number of electr
this scheme becomes unstable, and it is more efficient [6—8] to directly minimize (1).
A functional different from but simpler than (1) is the “non-self-consistent” functiona

m

Enonsel W) =2 (WilHmed Vi),  (Wily)) =8, ®

i=1

in which the operatoH sixeq does notdepend orp. This functional represents simply an
eigenvalue problem and can be efficiently minimized by an iterative eigensolver, e.g., b
on the Davidson [11] or Lanczos [12] schemes. However, these eigensolvers have not
designed to handle a matrf that depends on the eigenvectors.

In the following sections, the unconstrained functionals will be developed based on
non-self-consistent functional (8). This simplifies the presentation substantially. At firs
seems likeEnonsct iS a rather different problem from the original one (1). However, if jus
H[p] is updated as thgvy )} converge (i.e., at any instanges consistent witH|y)}), it
retains one essential feature of the original functional: it yields the same first derival
provided that the dependencei&fon p is ignored when the derivative is computed. Thi:
means that the algorithms presented below are easily generalized to the “self-consis
case by keepingl and{|yr)} consistent. Where the differences between (1) and (8) beco
important, special mention will be made.

An explicit representation of the wave functidfg )} allows a compact matrix notation.
Expanding in terms of a finite set &f orthonormal basis functionsy)},

N
W)= Yilg). ©)
1=1

the orthonormality constraint can be expressed as
Y'Y =1,  (Imisthem x midentity), (10)

since column of Y contains the expansion coefficientg ¢f). For simplicity,Y is assumed
to berealN varies depending on the basis set and the system under study, but for the po
plane-wave basis used in the subsequent test calculatibbygpically ranges from 20 to
1000 timesm. ThusY is a (N x m) tall and skinny matrix. With the expansion (9) the
operatorH turns into a matrix, and the objective function (8) becomes

EiY]=2tr(YTHY), Y'Y =In, (11)

where the subscript denotes that th¥ are subject to orthonormality constraints.
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3. MINIMIZING THE CONSTRAINED FUNCTIONAL

All eigensolvers minimize (11) when they compute the smallest eigenvalues and ¢
responding eigenvectors. In particular the trace minimization algorithms [13] expose t
concept explicitly. A straightforward use of, e.g., the conjugate gradient algorithm is r
possible, because the columngdfiave to be kept orthonormal during the iteration [7]. The
inclusion of the constraint is not trivial, and many algorithms proposed in the literature
not exhibit some of the desirable properties of true conjugate gradients, such as quad
convergence near the minimum [14]. Admittedly, the regime of quadratic convergenc
never reached in practice, since the dimensionality of the search space (up to several
lions) is orders of magnitude larger than the number of iterations (a few hundred at
most). However, since most of the proposed algorithms cannot claim to progress in co
gate directions, it is questionable whether the rate of convergence in the linear converg
regime is as good as conjugate gradients. This has been pointed out in a recent pap
Edelmaret al.[15], who present a “correct” conjugate gradient algorithm with superlines
speedup near the minimum.

The present work will not discuss the constrained minimization, but follow the lines
Stichet al. [8] and eliminate the constraints by rewriting the objective function (11).

4. UNCONSTRAINED FUNCTIONAL WITH OVERLAP MATRIX INVERSION

The constraints in (11) can be removed by transforming to a set of veXtspanning
the same subspace,

Y=XS%¥2 = s=XTX, (12)

but not necessarily being orthonormal. The overlap ma#is a measure of the non-
orthonormality ofX. This approach has been used for electronic structure calculations bef
[8, 9], especially for ordeN schemes [16-18]. In terms &f the energy functional reads

Es1[X] = 2tr(SIXTHX), (13)

but now there are no constraints, and a standard optimization technique can be used to
imize Es-:[ X], which is a function ofN mvariables. Sincd m can easily grow to several
millions, conjugate gradients is the method of choice.
Conjugate gradients needs two basic ingredients: the gradient of the objective funct
and a rule how to do the line search. Feg-:[ X], the gradient is
oE
S =4HXS - XSIXTHX)SY;;. (14)
ij
From the gradient, a search directibn(a N x m matrix) is computed according to, e.g.,
the Polak—Rikere prescription [19]. Onc® is picked, a line minimization is performed
alongD:

min Es-+[X ()] = min 2 tr(SL )X () THX(1))

X(t) = X +tD (15)
S(t) = X(t)TX(t).
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At this point, one should use the true energy functional (1)—suitably generalized to r
orthonormal wave functions—to do the line minimization. However, itis more convenien
and faster to minimize the non-self-consistent functidaal[ X (t)] instead. Then, the line
minimization becomes an inexact one. Our experience, however, shows that the inexac
search degrades the rate of convergence of the algorithm only negligibly.

Even using the simpler non-self-consistent functional, the line search is cumbers
because one has to find the minimum of (15) by numerical methods, and for each
step lengthyia, S (twia) has to be computed. This is one of the main motivations for tt
approximate functionals presented later.

In order to compardes-1[ X] with the other functionals discussed below, it is useful t
understand the rate of convergence with which a conjugate gradient scheme will minir
(13). Forquadratic formsone can find rigorous upper bounds on the convergence rate of
conjugate gradient algorithm in the regime of linear convergence [20]. Linear converge
is observed when the eigenvalues are sufficiently spread out, and the number of iterz
is much smaller than the number of distinct eigenvalues. Then, themrimthe objective
function at iteration steg is bounded by

P < (\i = 1) (16)

Here,c is the condition number of the Hessian mattixassociated with (13). When the
eigenvalues are clustered, then the conjugate gradient algorithm may converge much
than the above bound indicates. Indeed, in the absence of roundoff error, the algorithn
converge ink steps on a matrix with onlk distinct eigenvalues. To get insight into the
expected rate of convergence near the minimum, we compute the eigenvatiédllofv-
ing Refs. [17, 18]. Since the eigenvectgq@ corresponding to the smallest eigenvalue
€,i=1,..., mare known to minimize (13), one can choose them as the origin,

xi =y +Z Dy© 17)

and express the deviation in terms of fhiéspectrunof the N eigenvectors oH. Inserting
(17) into (13) yields to second order in the expansion coefficights

Esl—Eo_zz Z (ek — e (c))”. (18)

i=1 k=m+1

Notice that the sum ovércovers the full spectrum beyoma but the sum overris just over
them eigenvectors with smallest eigenvalues. Sincectlaee labeled in ascending order,
we can immediately read off the smallest eigenvalugl@s 2¢m, 1 — €m) and the largest
as den — €1). Hence the condition numberof H is determined by the ratio df’s spread
and “gap”:
EN — €
c= N7 (19)
€m+l — €m
For fast convergence, a large gap and a small spread are necessary. Begatisg) >
(ém+1 — €m), Of coursec> 1.
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5. UNCONSTRAINED FUNCTIONAL WITH APPROXIMATE
OVERLAP MATRIX INVERSION

As has been pointed out in Section 4, the inverseSaifi the functionalEg-1[X] is
undesirable. Assuming for the moment that the column% afe almost orthonormag—
is to first order in(S— 1):

Sla@ -9). (20)

After shifting H by 5 to be negative definiteone can show [17, 18] that the resulting
functional

Ea—s[X] = 2tr((21 — HXT(H —n)X) (21)

still has the “right” minimum. This means that tbeminimizing E,, _g[ X] span the same
subspace as th¥ minimizing Es-:[ X] or the Y obtained by minimizinge, [Y]. In fact,
at the minimum (21) automatically yields [17, 18] a set of orthonorXaWith a proper
choice ofn (potentially a larger value) this holds also for the self-consistent functional, n
just for the non-self-consistent functional in (21). The intuitive reason for the automa
orthonormality ofX at the minimum is thaEy,, _g[ X] has built-in “forces” driving theX
to become orthonormal, which in turn justifies the expansion (20).

The aforementioned “forces” become evident when an expansion (1B} 0f[ X]
around the minimum is carried out as in Section 4. To second order one obtains

m N
E2I—S_EOZZZZ(Ek_€| (') +ZS(77 €) (')

i=1 k=m+1
() (i)
€|+6 C| +C
+ Z ( J)( J ) (22)
i,j=1j>i ﬁ

In addition to the first term (also present in (18)), there is the second term which drives
X to be of unit length, and the third term leading to orthogonality. Equation (22) shows tt
the shifty should be at least > ¢, to make all eigenvalues of the Hessip, _s positive.
For X© to be aglobal minimum of (21),7 must be greater than the largest eigenvalye
To get fast convergenceg,should be chosen such that the condition numbét{gf s is
as small as possible. In other words, the eigenvalués.pf s from the second and third
term should fall within the range of eigenvalues generated by the first term. The pro
choice ofp is

ML ey N e (23)
4 4
In case such amexists, the condition numbershb, _sandHs-: are identical, and therefore
the conjugate gradient algorithm converges at the same rate. A numerical example of
will be shown in Section 8.

The main advantage &, _s over Es-: is the simplicity of the line minimization, which
now does not involve an explicit inverse 8f Rather, the line minimization can be done
exactly by finding the minimum of a fourth order polynomial (this is only valid for the non
self-consistent functional). The ordBrschemes prefe,, _s because it does not involve
a poorly scaling explicit matrix inverse.
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6. IMPROVED UNCONSTRAINED FUNCTIONAL WITH APPROXIMATE
OVERLAP MATRIX INVERSION

As shown in Section 5, the expansion (20) of the ma®iX to first order simplifies the
line minimization, and automatically [17, 18] leads to orthonormal veck¥arsiowever,
the Hessian matrix is altered, which could increase the condition number. The functi
presented in this section maintains the simplicityE _s but reduces the potentially
adverse effects on the Hessian matrix.

It has been proven [17, 18] that the expansiorsof in (13) toeven ordersn (S— 1)
also yields a functional which has orthonormP’ at the minimum, but nowd has to be
shifted to bepositive definiteFurthermore, th&X© at the minimum span the subspace ir
which Eg: is minimal. Expandings—! to second order iiS — 1) yields the first term of
the functional

Ea_ssig = 2tr((81 —3S+ SHXT(H + ) X) + 2 tr((S— 1)?). (24)

Here,n’ should be chosen to make+ ' positive definiteand a second term within front
has been introduced to facilitate the minimizati@bviously, this new term will vanish at
the minimum wherS= X" X = I, and forx > 0 will drive the X to become orthonormal.
At first it seems from the proof in Ref. [17, 18] that there is no need for the second t
in (24), since theX should become automatically orthonormal. Its need will become cle
when the Hessian matriks _3s, s 0f (24) is discussed in the following paragraph.
Using the expansion (17) d&f3 _3s, < around the minimum as in Section 4 yields

m N m m (l)+c(l)
E3|—3s+sz—Eo=ZZ Z (ex — &) (c +8K<Z (') Z <\/§> )

i=1 k=m+1 i=1 i=1j>i
(25)

Now, the only second-order terms leading to orthonormality are due to the second expre
in (24). Withoutit, a conjugate gradient scheme cannot be used to minitgizes, s, Since
there would be special directions in parameter space along which the objective func
has vanishing first and second derivatives, but is not completely flat (as it is in the cas
Es-1). As numerical experiments show, an attempted conjugate gradient minimizatiol
(24) with « = 0 stagnates at a finite error.

The line minimization forEs _3s, < is only slightly more effort than foE,, _s. Instead
of a fourth-order polynomial, now a sixth-order polynomial needs to be minimized.
get fast convergence, should be picked analogously toin (23) so as to minimize the
condition number o3, _3s; 5:

€mil — €m < 4k < en — €1. (26)

In contrast toE,, _s, the shifty” of H can be picked without impact on the Hessian matri
near the minimum. Furthermore, there always existsfar which (26) is satisfied. The
same need not be true fgin (23). Notice that only a single eigenvalue af 8 introduced
to Hg _3sy. s by the second term in (24), whereas in (22), there is a range of eigenval
due to the orthonormality terms.
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In case a proper shiff exists for Ep _s, andk in Ez _3s, 5 Satisfies (26), the two
functionals should show the same rate of convergence. In practice, this is often the
if no preconditioning is usedJnder preconditioning, the differences betwden_s and
Es _3s.5 do become important (Section 8).

7. PRECONDITIONING

Preconditioning [20] accelerates the convergence of the conjugate gradient schem
using a(Nmx Nm) matrix C which, when applied from the left to the Hessian mattix
brings the condition number & as close as possible to one. Preferably, the applicatic
of IC should not increase the operation count significantly. A simple and effective diago
preconditioner [5] is known for the case when a Fourier basis is used in (9) to repres
the wave functions. First, an approximate invekseof H is constructed, and then an
approximate inversi& of H is deduced.

When Fourier expanding the (not necessarily orthonormal) wave fundtighscorre-
sponding toX,

rigi) =Y _ xV(G)Ee, (27)

G

the vector indices are ordered ascending \&h and the expansion is truncated at a suitably
large|G| = Gmax. The Hamiltonian operatdd = —%VZ +V turns into a matrix:

1
Hee = §|G|2‘SGG’ + Vee'- (28)

By constructionVgg decays for largéG| or |G|, so for largeG, G/, the “kinetic energy”
term %|G|2<SGG dominates, andH is almost diagonal. This is exploited to construct an
approximate invers& of H which is essentially the one from Ref. [5]:

27+ 18s + 125? 4 8s°
27+ 18s + 12s? + 8s® + 165* (29)
s=|G]?/T.

Kee = dca’

The parametef determinesthe value ¢&| for which the preconditioneéf startsto become
x1/|G|%5gg . For |G|? < T, the preconditioner in (29) approaches the identity, since th
assumption oH being diagonal is not valid here, and it is better not to precondition. |
practice,T is chosen to be the maximum “kinetic enerdy= max 135G 2(x"(G))? of
allcolumnsx® i =1, ..., m. This turns out to give a good estimate for the regi@g > T
where the diagonal terms start dominatidgg . In principle, K must be kept fixed during
the course of the minimization to get truly conjugate directions. Numerical experimel
show thatT changes only little as the) converge, and sacrificing exact conjugacy by
adjustingK does not change the rate of convergence.

With K as an approximate inverse bf at hand, the preconditionét is constructed by
replicatingK onto the diagonal of. This preconditioner reduces the condition number o
‘H by compressing the spectrumldf As a consequence, it becomes more difficult or evel
impossible to find a proper choice pfin Es-: to satisfy the condition (23). At that point,
the more liberal condition (26) gives the functioi®y) _zs, s an advantage ovets-:. The
numerical example in Section 8 will illustrate this.
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8. NUMERICAL EXAMPLE

It is instructive to look at a simple, but relevant example for testing the statements of
preceding sections. Here, the performance of the conjugate gradient algorithm is studie
a diamond crystal. Only the valence electrons are treated, assuming the core electro
not participate in the chemical bond. The ionic cores are represented by norm-conse
pseudopotentials [21] in a separable Kleinman—Bylander form [22]. The pseudopoter
are designed to give the same enelEggs the real potential, but with a much smaller Fourie
basis set. Since there are two atoms in the unit cell with two valence electrons per spi
each atom, one needs to compute- 4 wave functions. In the plane-wave representatiol
the matrixH has a size oN = 609. This is much smaller than typical problem sizes studie
today, but it allows us to use MATLAB and an explicit representatioildbr numerical
experimentation. For larger matrix sizes, a straightforward parallelization is possible [Z

A direct diagonalization of the full matrix is first performed to get the spectrum shown
theinsetof Fig. 1. The smallest four “occupied” eigenvalues are grouped into a smaller si
eigenvalue and a triplet. They are well separated from the larger, “unoccupied” eigenva
This gap is critical for achieving fast convergence, since it affects the condition numbe
the Hessian according to (19).

The starting guess for the conjugate gradient procedure is generated by diagonalizin
by 27 submatrix from the upper left cornerldf and selecting the smallest four eigenpairs

without preconditioning
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FIG. 1. Number of iterations to reach an error of 10in the objective functions. On the abscissa are th
shift parameterg or « for a conjugate gradient algorithm performed on the energy functidhals E, _s, and
Ej _ss. 2. No preconditioning is performed. The inset shows the spectrum of the nkathecording to (23) and
(26), the rate of convergence should be the same for all functional3lit2n < 15.41 and 011 < « < 15.05.
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The other (609-27) components of the start vectors are filled up w10 rand () to
ensure that the full spectrum is represented in the starting guess. The resulting vector
orthonormalized with the MATLAB orth () command.

Without preconditioning, all three functionas;-1, E;| _s, andEjg, _ss, & should exhibit
similar convergence rates when minimized with a conjugate gradient algorithm. Acco
ing to Eq. (23), the functiondt,s_; should perform best for.81<n < 15.41. Likewise,
from (26), E3 _3s, < should give best performance forlQ < « < 15.05. Figure 1 shows
the number of iterations to reach an error of ¥as a function of; (for E»s ;) and«
(for Ez _3s12). SinceEg1 has no free parameters, it is represented by a horizontal lir
corresponding to 48 iterations.

Asis obvious from Fig. 1, as long as the parametensd« are chosen within the intervals
given by (23) or (26), all three functionals lead to the same rate of convergencen©nce
« are outside these intervals, the condition numbers of the Hessian matrides fprand
Es  _3s. < increase, and the convergence slows down.

Under preconditioning, convergence is more rajiid-( converges in 16 instead of 48
iterations), but the functionals,s_| andEjs, _3s. s Now show more sensitivity to the choice
of n andx (Fig. 2). The parametér for the preconditioner (29) has been seTte- 4 (the
physical units are Rydbergs) in order to be sure the same, fixed preconditioner is uset
all functionals. No shift; exists for whichE,s | converges as fast &-:. In contrast, for
0.4 <k < 1.0, Eg| _3s5; < shows the same performancet&s:.
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FIG. 2. Number of iterations to reach an error of 1din the objective functions. On the abscissa are the
shift parameterg or « for a conjugate gradient algorithm performed on the energy functidhals E; _s, and
E; _ss,. 2. The preconditioning results in better performance, but also in increased sensitivity to the choice of
parameterg and« for Ep_s andE; s, «.
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We currently only have a parallel implementatiore§_ | , which we have used for many
systems, some as largeras= 288, andN = 367,672 (this corresponds to an optimizatiol
in a parameter space of dimension 2060P!). We did not encounter any numerical insta:
bilities related to, e.g., the approximate inversiorSpbut we did encounter convergence
problems for systems with a small gap, consistent with our convergence analysis.

9. CONCLUSION

Three different variants of unconstrained energy functioials, E>s_|, andEs; _3s, <,
for electronic structure calculations have been studied comparatively. The rate of cor
gence for a conjugate gradient minimization of those functionals is discussed. B¢hile
does not require any shift parameters and performs best under preconditioning, it ha
disadvantages of a tedious line minimization and an explicit inversion of a (small) mat
The functionalE,s_ |, which has been previously used for orderealculations [17, 18],
is found to be sensitive to the choice of its free paramet@nd, in certain circumstances,
does not achieve optimal performance under preconditioning. A new functignals, <
is proposed which is less sensitive to its shift parameterhile avoiding the complicated
line minimization ofEg-:.
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