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The performance of conjugate gradient schemes for minimizing unconstrained
energy functionals in the context of condensed matter electronic structure density
functional calculations is studied. The unconstrained functionals allow a straight-
forward application of conjugate gradients by removing the explicit orthonormality
constraints on the quantum-mechanical wave functions. However, the removal of
the constraints can lead to slow convergence, in particular when preconditioning is
used. The convergence properties of two previously suggested energy functionals are
analyzed, and a new functional is proposed, which unifies some of the advantages of
the other functionals. A numerical example derived from a diamond crystal confirms
the analysis. c© 1999 Academic Press
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1. INTRODUCTION

There is little need to motivate the interest of science in electronic structure calculations.
The description of the chemical bond is probably the most celebrated success. Many other
important properties of matter, such as, for example, the response to electric and magnetic
fields, are also determined by the electronic structure.

The behavior of non-relativistic electrons is described by the many-electron Schr¨odinger
equation, which is too numerically demanding to solve for most real materials, since the
effort grows exponentially with the number of electrons. In density functional theory (DFT)
[1, 2], the task is reduced to dealing with an effective single-particle system with much more
favorable scaling properties. The fundamental theorems of DFT are that (a) the ground state
energyE of a quantum-mechanical system is a functional of theelectron number density
ρ(r) only, and (b) the true ground state density minimizes this functional [1]. Although
in principle E is a functional ofρ(r) only, in practice a “Kohn–Sham” expression [2]
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is used for accuracy reasons, involving single-particle wave functions|ψi 〉, i = 1, . . . , m.
Restricting the system to be a spin-compensated insulator withNel electrons, them= Nel/2
wave functions{|ψ〉} correspond to orbitals occupied by electrons. With these definitions
at hand, Kohn–Sham theory reduces to the optimization problem

E0 = min
{|ψ〉}

E[{|ψ〉}] = min
{|ψ〉}

2
m∑

i =1

〈ψi | − 1

2
∇2|ψi 〉 + F [ρ]. (1)

The electron number densityρ(r) is a scalar function of the spatial positionr and depends
on the wave functions as

ρ(r) = 2
m∑

i =1

|〈ψi |r 〉|2. (2)

Notice that the wave functions{|ψ〉} are subject to orthonormality constraints:

〈ψi |ψ j 〉 = δi j . (3)

The functionalF [ρ] contains the ionic, exchange-correlation, and Hartree energy of the
Kohn–Sham functional [2]. The exchange-correlation energy captures the complicated
many-body effects, and while it is proven to exist [2], no simple and exact expression
is known for it. In the local density approximation (LDA), this exchange-correlation term
is approximated by a simple functional form, which depends on the local electron den-
sity only. The recently developed generalized gradient approximations (GGA) [3] improve
upon LDA by including the gradient of the electron charge density into the expression for
the exchange-correlation term. The resulting computational procedure is not substantially
different from LDA, but the results are generally more accurate.

These days, up to several hundred atoms can be treated within DFT/LDA [4]. Many
algorithms have been proposed to solve the DFT/LDA equations (see, e.g., [5–9]), but the
search for more efficient schemes is still an active field [10].

2. FORMALISM

From a computational point of view, the DFT/LDA electronic structure problem is simply
a minimization of a function (cf. Eq. (1)) in a large parameter space. This section introduces
the necessary notation and a model functional which will be analyzed subsequently.

For optimizing (1), it is useful to know the first derivative ofE with respect to the
parameters|ψi 〉:

∂E

∂〈ψi | = 2Ĥ |ψi 〉 (4)

Ĥ = −1

2
∇2 +V̂ (5)

V̂ =
∫

r
d3r

δF

δρ(r)
|r 〉〈r |. (6)

This derivativedoes nottake the orthonormality constraints (3) into account. Both the
Hamiltonian operatorĤ and the potential operatorV̂ are in general Hermitian operators,
but for simplicity will be assumed real and symmetric here.
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The constraints can be treated by introducing a set of Lagrange multipliersεi , i = 1, . . . , m
(also known as Kohn–Sham eigenvalues), such that (1) becomes a non-linear eigenvalue
problem

(Ĥ [ρ] − εi )|ψi 〉 = 0, i = 1, . . . , m, (7)

where the operator̂H [ρ] depends on the solutions{|ψ〉} through (2), (5), and (6). The
standard procedure for many years has been to solve (7) with a fast, iterative eigensolver,
then updateρ andĤ [ρ] by formingρ from themeigenvectors with the smallest eigenvalues
ε, and solve again, until “self-consistency” is achieved. For a large number of electrons,
this scheme becomes unstable, and it is more efficient [6–8] to directly minimize (1).

A functional different from but simpler than (1) is the “non-self-consistent” functional

Enon-scf[{|ψ〉}] = 2
m∑

i =1

〈ψi |Ĥ fixed|ψi 〉, 〈ψi |ψ j 〉 = δi j , (8)

in which the operatorĤ fixed does notdepend onρ. This functional represents simply an
eigenvalue problem and can be efficiently minimized by an iterative eigensolver, e.g., based
on the Davidson [11] or Lanczos [12] schemes. However, these eigensolvers have not been
designed to handle a matrix̂H that depends on the eigenvectors.

In the following sections, the unconstrained functionals will be developed based on the
non-self-consistent functional (8). This simplifies the presentation substantially. At first it
seems likeEnon-scf is a rather different problem from the original one (1). However, if just
H [ρ] is updated as the{|ψ〉} converge (i.e., at any instanceρ is consistent with{|ψ〉}), it
retains one essential feature of the original functional: it yields the same first derivative,
provided that the dependence ofĤ on ρ is ignored when the derivative is computed. This
means that the algorithms presented below are easily generalized to the “self-consistent”
case by keepingH and{|ψ〉} consistent. Where the differences between (1) and (8) become
important, special mention will be made.

An explicit representation of the wave functions{|ψ〉} allows a compact matrix notation.
Expanding in terms of a finite set ofN orthonormal basis functions{|ϕ〉},

|ψi 〉 =
N∑

l=1

Yli |ϕl 〉, (9)

the orthonormality constraint can be expressed as

YT Y = Im (Im is them × m identity), (10)

since columni of Y contains the expansion coefficients of|ψi 〉. For simplicity,Y is assumed
to be real.N varies depending on the basis set and the system under study, but for the popular
plane-wave basis used in the subsequent test calculations,N typically ranges from 20 to
1000 timesm. ThusY is a (N × m) tall and skinny matrix. With the expansion (9) the
operatorĤ turns into a matrixH , and the objective function (8) becomes

E⊥[Y] = 2 tr(YT HY), YT Y = Im, (11)

where the subscript⊥ denotes that theY are subject to orthonormality constraints.
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3. MINIMIZING THE CONSTRAINED FUNCTIONAL

All eigensolvers minimize (11) when they compute the smallest eigenvalues and cor-
responding eigenvectors. In particular the trace minimization algorithms [13] expose this
concept explicitly. A straightforward use of, e.g., the conjugate gradient algorithm is not
possible, because the columns ofY have to be kept orthonormal during the iteration [7]. The
inclusion of the constraint is not trivial, and many algorithms proposed in the literature do
not exhibit some of the desirable properties of true conjugate gradients, such as quadratic
convergence near the minimum [14]. Admittedly, the regime of quadratic convergence is
never reached in practice, since the dimensionality of the search space (up to several mil-
lions) is orders of magnitude larger than the number of iterations (a few hundred at the
most). However, since most of the proposed algorithms cannot claim to progress in conju-
gate directions, it is questionable whether the rate of convergence in the linear convergence
regime is as good as conjugate gradients. This has been pointed out in a recent paper by
Edelmanet al. [15], who present a “correct” conjugate gradient algorithm with superlinear
speedup near the minimum.

The present work will not discuss the constrained minimization, but follow the lines of
Štichet al. [8] and eliminate the constraints by rewriting the objective function (11).

4. UNCONSTRAINED FUNCTIONAL WITH OVERLAP MATRIX INVERSION

The constraints in (11) can be removed by transforming to a set of vectorsX spanning
the same subspace,

Y = X S−1/2, S = XT X, (12)

but not necessarily being orthonormal. The overlap matrixS is a measure of the non-
orthonormality ofX. This approach has been used for electronic structure calculations before
[8, 9], especially for order-N schemes [16–18]. In terms ofX the energy functional reads

ES−1[X] = 2 tr(S−1XT H X), (13)

but now there are no constraints, and a standard optimization technique can be used to min-
imize ES−1[X], which is a function ofNm variables. SinceNm can easily grow to several
millions, conjugate gradients is the method of choice.

Conjugate gradients needs two basic ingredients: the gradient of the objective function,
and a rule how to do the line search. ForES−1[X], the gradient is

∂E

∂ Xi j
= 4[H X S−1 − X S−1(XT H X)S−1] i j . (14)

From the gradient, a search directionD (a N × m matrix) is computed according to, e.g.,
the Polak–Ribi`ere prescription [19]. OnceD is picked, a line minimization is performed
alongD:

min
t

ES−1[X(t)] = min
t

2 tr(S−1(t)X(t)T H X(t))

X(t) = X + t D

S(t) = X(t)T X(t).

(15)
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At this point, one should use the true energy functional (1)—suitably generalized to non-
orthonormal wave functionsX—to do the line minimization. However, it is more convenient
and faster to minimize the non-self-consistent functionalES−1[X(t)] instead. Then, the line
minimization becomes an inexact one. Our experience, however, shows that the inexact line
search degrades the rate of convergence of the algorithm only negligibly.

Even using the simpler non-self-consistent functional, the line search is cumbersome,
because one has to find the minimum of (15) by numerical methods, and for each trial
step lengthttrial, S−1(ttrial) has to be computed. This is one of the main motivations for the
approximate functionals presented later.

In order to compareES−1[X] with the other functionals discussed below, it is useful to
understand the rate of convergence with which a conjugate gradient scheme will minimize
(13). Forquadratic forms, one can find rigorous upper bounds on the convergence rate of the
conjugate gradient algorithm in the regime of linear convergence [20]. Linear convergence
is observed when the eigenvalues are sufficiently spread out, and the number of iterations
is much smaller than the number of distinct eigenvalues. Then, the errorρk in the objective
function at iteration stepk is bounded by

ρk ≤ 2

(√
c − 1√
c + 1

)k

ρ0. (16)

Here,c is the condition number of the Hessian matrixH associated with (13). When the
eigenvalues are clustered, then the conjugate gradient algorithm may converge much faster
than the above bound indicates. Indeed, in the absence of roundoff error, the algorithm will
converge ink steps on a matrix with onlyk distinct eigenvalues. To get insight into the
expected rate of convergence near the minimum, we compute the eigenvalues ofH follow-
ing Refs. [17, 18]. Since the eigenvectorsy(0)

i corresponding to the smallest eigenvalues
εi , i = 1, . . . , m are known to minimize (13), one can choose them as the origin,

xi = y(0)
i +

N∑
l=1

c(i )
l y(0)

l , (17)

and express the deviation in terms of thefull spectrumof theN eigenvectors ofH . Inserting
(17) into (13) yields to second order in the expansion coefficientsc(i )

l :

ES−1 − E0 = 2
m∑

i =1

N∑
k=m+1

(εk − εi )
(
c(i )

k

)2
. (18)

Notice that the sum overk covers the full spectrum beyondm, but the sum overi is just over
them eigenvectors with smallest eigenvalues. Since theε are labeled in ascending order,
we can immediately read off the smallest eigenvalue ofH as 2(εm+1 − εm) and the largest
as 2(εN − ε1). Hence the condition numberc ofH is determined by the ratio ofH ’s spread
and “gap”:

c = εN − ε1

εm+1 − εm
. (19)

For fast convergence, a large gap and a small spread are necessary. Because(εN − ε1) ≥
(εm+1 − εm), of course,c≥ 1.
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5. UNCONSTRAINED FUNCTIONAL WITH APPROXIMATE

OVERLAP MATRIX INVERSION

As has been pointed out in Section 4, the inverse ofS in the functionalES−1[X] is
undesirable. Assuming for the moment that the columns ofX are almost orthonormal,S−1

is to first order in(S− I ):

S−1 ≈ (2I − S). (20)

After shifting H by η to be negative definite, one can show [17, 18] that the resulting
functional

E2I −S[X] = 2 tr((2I − S)XT (H − η)X) (21)

still has the “right” minimum. This means that theX minimizing E2I −S[X] span the same
subspace as theX minimizing ES−1[X] or theY obtained by minimizingE⊥[Y]. In fact,
at the minimum (21) automatically yields [17, 18] a set of orthonormalX. With a proper
choice ofη (potentially a larger value) this holds also for the self-consistent functional, not
just for the non-self-consistent functional in (21). The intuitive reason for the automatic
orthonormality ofX at the minimum is thatE2I −S[X] has built-in “forces” driving theX
to become orthonormal, which in turn justifies the expansion (20).

The aforementioned “forces” become evident when an expansion (17) ofE2I −S[X]
around the minimum is carried out as in Section 4. To second order one obtains

E2I −S − E0 = 2
m∑

i =1

N∑
k=m+1

(εk − εi )
(
c(i )

k

)2 +
m∑

i =1

8(η − εi )
(
c(i )

i

)2

+
m∑

i, j =1, j >i

8

(
η − εi + ε j

2

)(
c( j )

i + c(i )
j√

2

)2

. (22)

In addition to the first term (also present in (18)), there is the second term which drives the
X to be of unit length, and the third term leading to orthogonality. Equation (22) shows that
the shiftη should be at leastη > εm to make all eigenvalues of the HessianH2I −S positive.
For X(0) to be aglobalminimum of (21),η must be greater than the largest eigenvalueεN .

To get fast convergence,η should be chosen such that the condition number ofH2I −S is
as small as possible. In other words, the eigenvalues ofH2I −S from the second and third
term should fall within the range of eigenvalues generated by the first term. The proper
choice ofη is

εm+1 − εm

4
+ εm ≤ η ≤ εN − ε1

4
+ ε1. (23)

In case such anη exists, the condition numbers ofH2I −SandHS−1 are identical, and therefore
the conjugate gradient algorithm converges at the same rate. A numerical example of this
will be shown in Section 8.

The main advantage ofE2I −S overES−1 is the simplicity of the line minimization, which
now does not involve an explicit inverse ofS. Rather, the line minimization can be done
exactly by finding the minimum of a fourth order polynomial (this is only valid for the non-
self-consistent functional). The order-N schemes preferE2I −S because it does not involve
a poorly scaling explicit matrix inverse.
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6. IMPROVED UNCONSTRAINED FUNCTIONAL WITH APPROXIMATE

OVERLAP MATRIX INVERSION

As shown in Section 5, the expansion (20) of the matrixS−1 to first order simplifies the
line minimization, and automatically [17, 18] leads to orthonormal vectorsX. However,
the Hessian matrix is altered, which could increase the condition number. The functional
presented in this section maintains the simplicity ofE2I −S but reduces the potentially
adverse effects on the Hessian matrix.

It has been proven [17, 18] that the expansion ofS−1 in (13) toeven ordersin (S− I )
also yields a functional which has orthonormalX(0) at the minimum, but nowH has to be
shifted to bepositive definite. Furthermore, theX(0) at the minimum span the subspace in
which ES−1 is minimal. ExpandingS−1 to second order in(S− I ) yields the first term of
the functional

E3I −3S+S2 = 2 tr((3I − 3S+ S2)XT (H + η′)X) + 2κ tr((S− I )2). (24)

Here,η′ should be chosen to makeH + η′ positive definite, and a second term withκ in front
has been introduced to facilitate the minimization. Obviously, this new term will vanish at
the minimum whenS= XT X = I , and forκ > 0 will drive the X to become orthonormal.
At first it seems from the proof in Ref. [17, 18] that there is no need for the second term
in (24), since theX should become automatically orthonormal. Its need will become clear
when the Hessian matrixH3I −3S+S2 of (24) is discussed in the following paragraph.

Using the expansion (17) ofE3I −3S+S2 around the minimum as in Section 4 yields

E3I −3S+S2 − E0 = 2
m∑

i =1

N∑
k=m+1

(εk − εi )
(
c(i )

k

)2 + 8κ

(
m∑

i =1

(
c(i )

i

)2 +
m∑

i =1, j >i

(
c( j )

i + c(i )
j√

2

)2)
.

(25)

Now, the only second-order terms leading to orthonormality are due to the second expression
in (24). Without it, a conjugate gradient scheme cannot be used to minimizeE3I −3S+S2, since
there would be special directions in parameter space along which the objective function
has vanishing first and second derivatives, but is not completely flat (as it is in the case of
ES−1). As numerical experiments show, an attempted conjugate gradient minimization of
(24) withκ = 0 stagnates at a finite error.

The line minimization forE3I −3S+S2 is only slightly more effort than forE2I −S. Instead
of a fourth-order polynomial, now a sixth-order polynomial needs to be minimized. To
get fast convergence,κ should be picked analogously toη in (23) so as to minimize the
condition number ofH3I −3S+S2:

εm+1 − εm ≤ 4κ ≤ εN − ε1. (26)

In contrast toE2I −S, the shiftη′ of H can be picked without impact on the Hessian matrix
near the minimum. Furthermore, there always exists aκ for which (26) is satisfied. The
same need not be true forη in (23). Notice that only a single eigenvalue of 8κ is introduced
toH3I −3S+S2 by the second term in (24), whereas in (22), there is a range of eigenvalues
due to the orthonormality terms.
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In case a proper shiftη exists for E2I −S, andκ in E3I −3S+S2 satisfies (26), the two
functionals should show the same rate of convergence. In practice, this is often the case
if no preconditioning is used. Under preconditioning, the differences betweenE2I −S and
E3I −3S+S2 do become important (Section 8).

7. PRECONDITIONING

Preconditioning [20] accelerates the convergence of the conjugate gradient scheme by
using a(Nm× Nm) matrixK which, when applied from the left to the Hessian matrixH,
brings the condition number ofKH as close as possible to one. Preferably, the application
of K should not increase the operation count significantly. A simple and effective diagonal
preconditioner [5] is known for the case when a Fourier basis is used in (9) to represent
the wave functions. First, an approximate inverseK of H is constructed, and then an
approximate inverseK ofH is deduced.

When Fourier expanding the (not necessarily orthonormal) wave functions{|φ〉} corre-
sponding toX,

〈r |φi 〉 =
∑

G

x(i )(G)ei G · r , (27)

the vector indices are ordered ascending with|G|, and the expansion is truncated at a suitably
large|G| = Gmax. The Hamiltonian operator̂H = − 1

2∇2 +V̂ turns into a matrix:

HGG′ = 1

2
|G|2δGG′ + VGG′ . (28)

By construction,VGG′ decays for large|G| or |G′|, so for largeG, G′, the “kinetic energy”
term 1

2|G|2δGG′ dominates, andH is almost diagonal. This is exploited to construct an
approximate inverseK of H which is essentially the one from Ref. [5]:

KGG′ = δGG′
27+ 18s + 12s2 + 8s3

27+ 18s + 12s2 + 8s3 + 16s4

s = |G|2/T.

(29)

The parameterT determines the value of|G| for which the preconditionerK starts to become
∝1/|G|2δGG′ . For |G|2 < T , the preconditioner in (29) approaches the identity, since the
assumption ofH being diagonal is not valid here, and it is better not to precondition. In
practice,T is chosen to be the maximum “kinetic energy”T = maxi

1
2

∑
G|G|2(x(i )(G))2 of

all columnsx(i ) i = 1, . . . , m. This turns out to give a good estimate for the regime|G|2 > T
where the diagonal terms start dominatingHGG′ . In principle,K must be kept fixed during
the course of the minimization to get truly conjugate directions. Numerical experiments
show thatT changes only little as thex(i ) converge, and sacrificing exact conjugacy by
adjustingK does not change the rate of convergence.

With K as an approximate inverse ofH at hand, the preconditionerK is constructed by
replicatingK onto the diagonal ofK. This preconditioner reduces the condition number of
H by compressing the spectrum ofH . As a consequence, it becomes more difficult or even
impossible to find a proper choice ofη in ES−1 to satisfy the condition (23). At that point,
the more liberal condition (26) gives the functionalE3I −3S+S2 an advantage overES−1. The
numerical example in Section 8 will illustrate this.
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8. NUMERICAL EXAMPLE

It is instructive to look at a simple, but relevant example for testing the statements of the
preceding sections. Here, the performance of the conjugate gradient algorithm is studied for
a diamond crystal. Only the valence electrons are treated, assuming the core electrons do
not participate in the chemical bond. The ionic cores are represented by norm-conserving
pseudopotentials [21] in a separable Kleinman–Bylander form [22]. The pseudopotentials
are designed to give the same energyE as the real potential, but with a much smaller Fourier
basis set. Since there are two atoms in the unit cell with two valence electrons per spin for
each atom, one needs to computem= 4 wave functions. In the plane-wave representation,
the matrixH has a size ofN = 609. This is much smaller than typical problem sizes studied
today, but it allows us to use MATLAB and an explicit representation ofH for numerical
experimentation. For larger matrix sizes, a straightforward parallelization is possible [23].

A direct diagonalization of the full matrix is first performed to get the spectrum shown in
the inset of Fig. 1. The smallest four “occupied” eigenvalues are grouped into a smaller single
eigenvalue and a triplet. They are well separated from the larger, “unoccupied” eigenvalues.
This gap is critical for achieving fast convergence, since it affects the condition number of
the Hessian according to (19).

The starting guess for the conjugate gradient procedure is generated by diagonalizing a 27
by 27 submatrix from the upper left corner ofH , and selecting the smallest four eigenpairs.

FIG. 1. Number of iterations to reach an error of 10−13 in the objective functions. On the abscissa are the
shift parametersη or κ for a conjugate gradient algorithm performed on the energy functionalsES−1, E2I −S, and
E3I −3S+S2. No preconditioning is performed. The inset shows the spectrum of the matrixH . According to (23) and
(26), the rate of convergence should be the same for all functionals if 2.01< η < 15.41 and 0.11< κ < 15.05.
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The other (609-27) components of the start vectors are filled up with 0.001∗ rand () to
ensure that the full spectrum is represented in the starting guess. The resulting vectors are
orthonormalized with the MATLAB orth () command.

Without preconditioning, all three functionalsES−1, E2I −S, andE3I −3S+S2 should exhibit
similar convergence rates when minimized with a conjugate gradient algorithm. Accord-
ing to Eq. (23), the functionalE2S−I should perform best for 2.01≤ η ≤ 15.41. Likewise,
from (26), E3I −3S+S2 should give best performance for 0.11≤ κ ≤ 15.05. Figure 1 shows
the number of iterations to reach an error of 10−13 as a function ofη (for E2S−I ) andκ

(for E3I −3S+S2). SinceES−1 has no free parameters, it is represented by a horizontal line
corresponding to 48 iterations.

As is obvious from Fig. 1, as long as the parametersη andκ are chosen within the intervals
given by (23) or (26), all three functionals lead to the same rate of convergence. Onceη or
κ are outside these intervals, the condition numbers of the Hessian matrices forE2S−I and
E3I −3S+S2 increase, and the convergence slows down.

Under preconditioning, convergence is more rapid (ES−1 converges in 16 instead of 48
iterations), but the functionalsE2S−I andE3I −3S+S2 now show more sensitivity to the choice
of η andκ (Fig. 2). The parameterT for the preconditioner (29) has been set toT = 4 (the
physical units are Rydbergs) in order to be sure the same, fixed preconditioner is used for
all functionals. No shiftη exists for whichE2S−I converges as fast asES−1. In contrast, for
0.4≤ κ ≤ 1.0, E3I −3S+S2 shows the same performance asES−1.

FIG. 2. Number of iterations to reach an error of 10−13 in the objective functions. On the abscissa are the
shift parametersη or κ for a conjugate gradient algorithm performed on the energy functionalsES−1, E2I −S, and
E3I −3S+S2. The preconditioning results in better performance, but also in increased sensitivity to the choice of the
parametersη andκ for E2I −S andE3I −3S+S2.
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We currently only have a parallel implementation ofE2S−I , which we have used for many
systems, some as large asm= 288, andN = 367,672 (this corresponds to an optimization
in a parameter space of dimension 106× 106!). We did not encounter any numerical insta-
bilities related to, e.g., the approximate inversion ofS, but we did encounter convergence
problems for systems with a small gap, consistent with our convergence analysis.

9. CONCLUSION

Three different variants of unconstrained energy functionals,ES−1, E2S−I , andE3I −3S+S2,
for electronic structure calculations have been studied comparatively. The rate of conver-
gence for a conjugate gradient minimization of those functionals is discussed. WhileES−1

does not require any shift parameters and performs best under preconditioning, it has the
disadvantages of a tedious line minimization and an explicit inversion of a (small) matrix.
The functionalE2S−I , which has been previously used for order-N calculations [17, 18],
is found to be sensitive to the choice of its free parameterη and, in certain circumstances,
does not achieve optimal performance under preconditioning. A new functionalE3I −3S+S2

is proposed which is less sensitive to its shift parameterκ, while avoiding the complicated
line minimization ofES−1.
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